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ABSTRACT In this paper, we have proposed an automated medical system for detecting type 2 diabetes
from exhaled breath. Human breath can be used as a diagnostic sample for detecting many diseases as it
contains many gases that are dissolved in the blood. Breath-based analysis stands out among the different
non-invasive ways of detection as it provides more accurate predictions and offers many advantages. In this
work, the concentration of acetone in the exhaled breath is analysed to detect type 2 diabetes. A new
sensing module consisting of an array of sensors is implemented for monitoring the acetone concentration
to detect the disease. Deep learning algorithms like Convolutional Neural Networks (CNN) are normally
used to automatically analyse medical data to make predictions. Even though the CNN performs well, a few
modifications to the network layout can further improve the classification accuracy of the learning model.
To analyse the sensor signals to generate predictions, a new deep hybrid Correlational Neural Network
(CORNN) is designed and implemented in this research. The proposed detection approach and deep learning
algorithm offer improved accuracy when compared to other non-invasive techniques.

INDEX TERMS Acetone, breath, convolutional neural network, correlation, deep learning, diabetes, neural
network.

I. INTRODUCTION
Diabetes is a chronic disease that requires frequent blood

created in the pancreas, regulates the body’s blood glucose
level [1]. When blood glucose levels rise, the insulin produc-

glucose testing. The World Health Organization’s most recent
statistics indicate that there are more than 500 million diabetic
patients worldwide, and around 1.6 million people die each
year due to diabetes and related disorders. The number of
people living with diabetes may reach 780 million by 2045,
according to reports from the International Diabetes Fed-
eration (IDF). To prevent or delay long-term health issues
associated with diabetes, it is necessary to keep the sugar
levels at the desired level. The hormone insulin, which is
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tion increases in the pancreas to counteract the rise. This helps
maintain the blood glucose level within the normal range in
a healthy person. In type 2 diabetic patients, the body cannot
produce enough insulin to adequately counteract the rise in
blood glucose levels. Monitoring the level of glucose in a
blood sample is the clinically accepted way for detecting
diabetes [2]. There is an increasing need for a non-invasive
technique of monitoring diabetes because traditional diabetes
detection is an invasive process.

According to medical studies, small amounts of glucose are
found in saliva, tears, sweat and urine [3]. These biological
samples offer the potential for non-invasive glucose level
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TABLE 1. Biomarkers identified in exhaled breath to detect various

diseases.
Biomarker Disease Reference
Acetone Diabetes [7]
Nitric oxide Asthma [8]
Ammonia Kidney disease [9]
Pentane Myocardial infarction [10]
Methane Cancer [11]
Hydrogen cyanide Cystic fibrosis [12]

prediction in the body. Recent research has shown that the
analysis of breath is a reliable non-invasive method to check
glucose levels in the body [4], [5]. The primary components
of the exhaled breath are oxygen (13%—16%), nitrogen (78%-
79%), carbon dioxide (4%-6%) and approximately 2% of
other gases including Volatile Organic Compounds (VOCs).
More than 300 VOCs, which are rich in physiological and
metabolic information, are excreted by a human during respi-
ration. Certain biomarkers are found in the breath, and track-
ing their levels reveals the potential presence of numerous
chronic conditions [6]. Table 1 provides a list of some of
the biomarkers that have already been identified in exhaled
breath to detect various diseases.

Acetone, a volatile chemical compound exhaled during
breathing, is closely related to the body’s blood sugar levels.
Therefore, diabetes can be identified by monitoring the ace-
tone levels in human breath. According to medical research,
the amount of acetone in the breath of a healthy person and
a diabetic patient will differ. In healthy individuals, acetone
levels are normally less than 0.9 parts per million (ppm), but
they are greater than 1.7 ppm in diabetic patients [13]. There
are many sensors available to measure the concentrations of
acetone gas. However, there is no specific sensing module
available for measuring the acetone level in the exhaled
breath. Due to the inadequacy of the traditional acetone
detection methods for automated detection, a new detection
module is created and deployed in this study. The amount of
acetone in the breath is measured using a Metal Oxide Semi-
conductor (MOS) based gas sensor. As the acetone estimation
is impacted by various parameters like humidity, temperature
and pressure values in the detection chamber, we have used
an array of sensors in the detection part.

In order to identify diseases and make automated predic-
tions, machine learning techniques are commonly employed
in biomedical signal processing applications [14]. The clas-
sification task in machine learning is carried out by using
various machine learning algorithms. The main advantage
of using machine learning networks is that, after learning,
these algorithms can automatically perform the assigned goal.
With these techniques, we can teach the machines to analyze
data more quickly and efficiently. Machine learning offers
a variety of feature extraction and classification algorithms.
For feature extraction and classification, two different algo-
rithms are often used in traditional machine learning methods.
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Recent studies have employed Convolutional Neural Net-
work (CNN) models in place of traditional machine learning
methods for making the prediction [15]. The CNN itself
performs both feature extraction and classification tasks in
CNN learning networks. As a result, CNN networks do not
need a separate feature extraction module. Compared to tradi-
tional machine learning networks, CNN delivers more accu-
rate outcomes when addressing real-time problems. In this
study, a new deep learning Correlational Neural Network
(CORNN) model that gives greater classification accuracy is
developed and employed for the classification of the samples.
The proposed network, as its name suggests, extracts the
features from the sample using a correlation layer rather
than a convolution layer. With the proposed medical system,
anyone can be assisted in making a clinical decision without
the assistance of doctors.

Il. ARCHITECTURE OF THE CORRELATIONAL NEURAL
NETWORK
The proposed CORNN architecture is designed by amending
the architecture of conventional CNN. To get the best features
out of the sensor response signal, we used the correlation
operation rather than the convolution. Fig. 1 depicts the con-
ceptual layout of the CORNN learning model. The network
has layers of correlation and sub-sampling, followed by a
layer for classification. The key component of this model is
the correlational part. The procedure of feature extraction is
used to extract the important features from the input signal.
In signal-processing applications, convolution and corre-
lation techniques are extensively utilised. The fundamental
correlation operation involves applying the filter to the input
signal and computing the sum of the products of the overlap-
ping data [16]. By using the same filter on the whole input
signal, this procedure is repeated. The following equation
represents the correlation procedure between the two signals:

N
krol@)= " ke(DI(x+1i) ey

i=—N

where I represent the input signal and &, represents the kernel.
Similarly, for a 2-D signal, the equation is represented as:

N N
keo e, y)= D > k)Ix+iy+)j) ()

j=—N i=—N

A minor distinction separates the convolution from the cor-
relation procedure. Before executing the signal convolution
procedure, the filter is rotated 180 degrees in the convolution
operation. The mathematical representation of the convolu-
tion procedure for 1-D and 2-D input signals is as follows:

N
k¥ 1) = D ke (DI (x = i) 3)
i=—N
N N
ke s 1Ge,y) = D D kG —isy—j)  (4)
j=—N i=—N
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FIGURE 1. Architecture of the correlational neural network model. The network has layers of correlation and sub-sampling, followed by a

classification layer.
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FIGURE 2. Method of finding the correlation between two signals x[n] = [1], [2], [2], [3] and k[n] = [1], [2], [3]. [4].

In a typical convolution procedure, the kernel is flipped
prior to convolution between the applied input signal and ker-
nel. Convolution operations are essentially cross-correlation
operations in deep learning networks as the kernel flipping
is not done here. Kernels are important in the feature extrac-
tion process [17]. The kernel’s values will be inverted upon
flipping, delivering a different result. As a result, neural net-
works do not flip the kernels before the convolution process.
The correlation and convolution techniques are the same
when applied to deep learning networks. The correlation
network presented in this paper, however, represents a novel
strategy that differs from the methods already in use. The
cross-correlation procedure is applied to draw the best feature
maps in the proposed design. Additionally, we used adaptive
kernels to run the network that were derived from the sensor
signal itself.

A. PROPOSED CORRELATION OPERATION

The correlation method will determine whether there is
a correlation between the kernel and the input signal.
An input data-driven kernel can thoroughly analyse the sig-
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nal’s behaviour because the similarity between the signals
is measured here. Therefore, we used adaptive kernels to
carry out the correlation process. The proposed correlation
operation is illustrated with an example in Fig. 2. In this
example, the kernel k[n] = [1], [2], [3], [4] and the input
signal x[n] = [1], [2], [2], [3] is correlated with each other.
The dimensions of both of these signals are 1 x 4. During the
correlation process, the kernel is moved over the input signal,
and the overlapping values are multiplied. The values of the
correlated signal are then calculated by adding the multiplied
values. Each time, the kernel is moved to one sample to the
right. The correlated signal is obtained as y[n] = [2], [8], [8],
[9], [14], [19], [20]. The provided example demonstrates that
the correlation will reach its maximum value when the input
signal most closely resembles the values of the kernel.

B. ADAPTIVE KERNELS FOR CORRELATION

In this approach, the correlation between the input signal and
the kernel is used to find similarities between the signals.
So, choosing the best kernel for the correlation network
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FIGURE 3. Detection circuit of the TGS1820 sensor.

is important. Depending on the correlation kernel utilised,
we can derive feature maps from the signal. The choice of
kernel type and size is not subject to any clear rules or restric-
tions. The trial-and-error approach is the ideal way to choose
a kernel since it allows us to assess the network using dif-
ferent kernels and choose the one that yields the most useful
results. Generally, a predetermined kernel like the gaussian
kernel is employed in typical CNN models [18]. It will be
appropriate if we select a kernel that is comparable to the
input signal because the correlation gauges the similarity
that exists between the signals. We, therefore, employed new
kernels for the proposed neural network that were constructed
and trained from the sensor data itself. Since the kernels are
created using sensor data, they can easily adapt to the input
signal and can analyse the behaviour of the input signal in
greater detail. The specifications of the adaptive kernel are
described in section III-B, along with the realisation of the
proposed learning network.

Ill. SYSTEM DESIGN AND TESTING
A. DESCRIPTION OF THE SENSORY UNIT
Several studies have shown the use of MOS sensors in breath-
based sensing. The best sensors for breath analysis are MOS
sensors because of their small size, ease of use, low cost
and minimal maintenance needs [19]. In this work, a new
detection module based on a breath acetone gas sensor is
developed. The acetone concentration is detected using an
array of sensors. In the detection circuit, we used a TGS
1820 gas sensor with high acetone gas sensitivity [20]. A sin-
tered metal oxide semiconductor material bead with a metal
coil makes up the sensing element of the TGS 1820. The
electrical conductivity generated by gas adsorption on the
MOS material surface between the two ends of the metal coil
can be measured using the change in resistance of the MOS
material and the metal coil. These variations are measured
and assessed using the analysis software, and the acetone
concentrations can be predicted.

The detection circuit of the TGS1820 acetone sensor is
depicted in Fig. 3. The circuit voltage is applied between
the sensor’s two ends and the load resistor, which is con-
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FIGURE 4. Graphical representation of the test chamber. At the front of
the chamber is a mouthpiece for blowing air. The three sensors are
positioned at the test chamber’s back end.

nected in series with the network. A circuit voltage of 2.3V is
applied, and a load resistor of 10£2 is connected to the circuit,
to maintain the sensing element at the ideal temperature that
is suitable for acetone gas detection. A Wheatstone bridge
comprised of the sensor, a load resistor, and two resistor pairs
is used to measure the sensor output. The acetone sensor
provides the voltage and resistance readings. It is impor-
tant to track the pressure inside the chamber as improper
blowing into the test chamber’s mouthpiece can impact the
acetone readings. A BMP180 sensor is linked to the sensor
array to measure the pressure value inside the chamber [21].
A DHT11 sensor is used to measure the humidity and temper-
ature [22]. For carrying out the testing process, we designed
a test chamber. Fig. 4 displays the graphic representation of
the designed test chamber. The chamber has a mouthpiece at
its front for blowing the air. The three sensors are placed at
the back end of the test chamber.

For the testing phase, 82 healthy individuals and 70 type 2
diabetic patients under different age groups were selected.
The required procedures were followed prior to the testing
process, and the study was conducted in compliance with
the Declaration of Helsinki. Information about the participant
groups is given in Table 2. Before the analysis, oral health
guidelines were provided to all of the participants. To get
the fasting glucose level, participants were instructed to fast
for eight to ten hours before the test. The procedures were
carried out at the District Community Medical Center under
the direction of medical professionals. The volunteers were
instructed to hold their breath before blowing into the mouth-
piece of the test chamber. A total of 100 seconds of the sensor
output are captured, with recordings made every 0.1 seconds.
Therefore, the dimension of the sensor output signal will be
1x1000. The proposed deep-learning model is used directly
to analyse and predict the normalized sensor signal.

The signal is normalized using the following function:

[ =135 f()

Fl(i) =
SIS - L35 fp

(&)
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TABLE 2. Demographic details of the participants.

Average | Average blood
Total Male/
Class . age glucose value
participants | Female
(Years) (mg/dL)
Diabetic
70 42/28 47 135.16
class
Healthy
82 44/38 44 88.02
class

where z is the number of data points in the signal and f(n) is
the signal sampled to 1000 points.

B. DEEP LEARNING MODULE

An advanced deep-learning CORNN model is employed for
analysing the sensor output. For extracting the best features,
we used the correlation operation rather than the convolu-
tion operation. We used the cross-correlation approach to
obtain the ideal features for classifying the samples. Also,
we have used adaptive kernels rather than predetermined
kernels, which are produced from the sensor pattern itself.
The correlation approach will ascertain whether there is a cor-
relation between the input signal and the kernel [23]. A kernel
trained from the input data may analyse the signal more
successfully because this verifies the similarity between the
signals. The size of the input signal at each phase determines
the kernel size. Since the kernels are created from sensor data,
they can easily adapt to the input signal and can analyze the
behaviour of the input signal in greater depth.

Five correlation and pooling levels are employed to carry
out the proposed correlation framework. In deep learning net-
work design, as we already mentioned, a predetermined ker-
nel is typically employed. So, we first used a general-purpose
gaussian kernel to test our network [18]. Next, we have
swapped out this kernel for the proposed adaptive kernels.
As a result of the proposed kernel’s higher correlation with
the input signal, we achieved better results with our adaptive
kernels. This shows that, in terms of correlation operation, the
proposed adaptive kernel performs better than the gaussian
kernel.

The kernel for the first phase should be 1x1000 in
size because the sensor output signal is 1x1000 in length.
To achieve this, the sensor values for each of the 82 healthy
cases were averaged, and the respective signal is provided as
the kernel for the first correlation layer. After that, the kernel
is shifted over the input signal with a stride value of 1. The
total of the products of the overlapping values is calculated
concurrently. The size of the signal will therefore be 1x1999
following the initial correlation process. The max-pooling
function is applied to the correlated signal because the size of
the correlated signal will be large [24]. The pooling process
will cut down the number of parameters, which will dras-
tically decrease the dimension of the signal without losing
the details required for prediction. By adopting the sliding
window technique, pooling is done by splitting the signal
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TABLE 3. Dimensions of the derived kernels for the correlation process.

Kernel dimension
1x1000
1x399
1x159
1x63
1x25

Stages

gt W N =

into several segments while maintaining a segment size of
five [25]. 399 subsections will be produced following seg-
mentation. Max-pooling keeps the highest value from each
slice of pooling. The size of the feature map created after the
first stage will therefore be 1x399 in size.

The input signal of the second correlation layer will have a
dimension of 1x399, so we must build a kernel with this same
dimension. As a result, the kernel for this layer is derived by
correlating the kernel from the first stage with itself. To ensure
that the features of the kernel and correlated output are the
same, the kernel is correlated. The first correlated signal’s
dimension will be equal to that of the correlated kernel signal.
By setting the segment size at five, the output signal obtained
after correlation is divided into numerous segments. The
maximum value is then taken out of each pooling zone using
the max-pooling approach to obtain the kernel function for the
second layer. Therefore, the kernel size and the dimension of
the input signal will become 1x399. The second correlated
signal is then generated by performing a correlation between
these two signals. The input data will be converted into a set
of values with a dimension of 1x797 after the correlation
operation. The signal obtained is subjected to the pooling
function to minimize the feature set’s dimension. As a result,
the size of the feature map produced after the second layer
will be 1x159.

The second kernel acts as the basis for the third stage ker-
nel. The third stage’s input will be the second layer’s output.
The kernel used for the second stage is correlated with itself
to create the third kernel. The windowing approach is then
used to split the output signal into segments. Following seg-
mentation, max pooling is used to get the highest value from
each region. To create the third kernel for the correlation, the
pooling function will choose 159 samples. Consequently, the
third kernel will have the dimension 1x159. This process
is repeated to derive the kernel for the next two phases.
As aresult, 1 x63 and 1x25 dimensional adaptive kernels are
obtained for the next two stages. The dimensions of adaptive
kernels derived for the five stages are shown in Table 3.

The result of the third correlated signal will have a dimen-
sion of 1x317. After using the third max-pooling algo-
rithm, this correlated signal is reduced to 1x63 samples.
The input signal will have a dimension of 1x125 after the
fourth correlation procedure. This will drop to 25 samples
after the pooling procedure is applied. As a result, the last
stage’s input signal will have a dimension of 1x25. The
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output signal will be generated with a dimension of 1x49
after applying the kernel with the same dimension. The
final pooling process reduces the size of the correlated sig-
nal to 1x9. The features map, which is obtained from the
reduced signal after the last pooling layer, is used to classify
the data.

The best features are obtained after five levels of correla-
tion and pooling procedures. Lastly, the retrieved features are
assigned to the classification layer for performing the clas-
sification to predict the class. The features obtained during
the feature extraction process are transferred to the network’s
classification layer, which is the last layer. A Multilayer
Perceptron (MLP) with an activation function serves as the
fully connected classification layer in a CNN [26]. Based
on the input feature sets, weights and activation function,
the MLP network predicts the output. To improve prediction
accuracy, we combined the proposed correlation network
with a Support Vector Machine (SVM) classifier to create
a hybrid model. A kernel based on the Radial Basis Function
(RBF) is used to implement the classifier [27]. The classifier’s
parameter values are chosen at random. SVM will classify the
data set by designating certain datasets as positive and others
as negative sets. Based on the provided data sets, the support
vectors are established, and the viability of the hyper-plane is
determined.

The SVM’s classification function is described as follows:

fi=Lo—b (6)
where b stands for the bias value and I and w are the input and

weight vectors, respectively.
The criteria used for classification are as follows:

Lw—b >0, hy
hy

1 7
Liwo—b < 0, —

1 ®)

The defined hypothesis, &y, designates a case that is either
normal or abnormal. The classification criterion is general-
ized as follows:

hiljw; — b) = 0 ©))

The following equation describes the classification margin of
SVM:

1
Cmar = T (10)

el

The SVM classifier’s training issue is regarded as an opti-
mization problem [28]. By minimising |||, the hyper-
plane is established for the SVM classifier’s optimiza-
tion. The margin of separation will increase if |w] is
valued less.

1
fiwy =l |12 (11)
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For the objective of identifying the solution, the Lagrangian
function must be represented in the dual form.

N N N
1
L@.b.o) =3l @[> = D ahlio+b Y ahi+ > a
i1 i=1 i=1
(12)

where « is the Lagrange multiplier.

The SVM classifier selects the ideal hyper-plane to max-
imise the boundary of the division line that divides the identi-
fied support vectors. The best hyperplane is then determined
by computing the @ and b.

n

0= Zaihili (13)
i=1
1 &

b=—> (h —Ilw) (14)

where v, represents the number of support vectors.

The RBF kernel function is used to determine the degree
of resemblance or proximity between two points of inter-
est, X1 and X2. This kernel has the following mathematical
representation:

— 1% =X, 1

krpr(X1,X2) = e 27 (15)

where the Euclidean distance between two points is repre-
sented by || X1 — X || and o is the hyperparameter.

IV. RESULTS AND DISCUSSION

The objective of this study is to build an automated diagnosis
system for detecting diabetes from exhaled breath. Machine
learning and deep learning algorithms are employed in this
work to make automated predictions of the tested samples.
The presence of the targeted compound acetone will cause
the sensing material of the sensor to react, and the electrical
characteristics of the sensor will vary accordingly. The sensor
out signal is directly given as the input to the machine learning
and deep learning models for automatically analyzing the
sensor response and making predictions. The proposed learn-
ing model is programmed and trained in the Matlab R2022b
tool. The normalised sensor data is used to train and test the
proposed CORNN model and to make automated predictions.
Various traditional learning networks are implemented and
tested along with this proposed model to analyse and compare
the outcomes [29].

A. PERFORMANCE ANALYSIS OF THE SENSING MODULE

The sensory unit we employed here is based on a new method-
ology; therefore, it is necessary to assess the capability of the
sensor to detect diabetes using a recognised diabetes detec-
tion method. The sensor used here has a 1 to 10 ppm detection
range. The sensor was first exposed to a range of acetone
gas concentrations to evaluate its response. The recorded
voltage readings for the various acetone concentration levels
are shown in Fig. 5. The standard medical procedure for
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FIGURE 5. Sensor response for variations in acetone gas concentration.

detecting diabetes is a blood-based screening procedure. The
blood sample is placed on a glucose testing strip with glucose-
oxidase, which combines with the blood glucose to produce
the desired result. The glucose level of the blood sample is
then determined using a glucometer. A fasting blood sugar
level of less than 100 mg/dL is considered normal. Fasting
blood sugar readings of 100 to 125 mg/dL are considered
prediabetic. When the blood glucose level is 126 mg/dL more,
diabetes is considered to be present [30].

To support and corroborate our findings, we measured
the blood glucose levels of each participant using the con-
ventional method. The data are analysed to determine the
effectiveness of the sensing module using Pearson’s corre-
lation and a regression model [31]. Statistics are used to
assess the degree of correlation between the readings obtained
from the proposed sensing model and blood-based screen-
ing. We observed an extremely strong correlation between
the voltage values obtained from the sensor and the blood
glucose values, with an r value of 0.9938. The scatter plot
for this analysis is shown in Fig. 6. For this assessment, the
regression line equation obtained is y = 192.92x 4 43.432.
The regression analysis statistical indicator (R?) is calculated
to be 0.9877.

The proposed system is not making predictions based on
blood glucose values. The sensor response signal is analyzed
with the help of machine learning and deep learning algo-
rithm to classify the samples automatically. The correlation
and regression analysis is only done to demonstrate that dia-
betes can be identified by monitoring the amount of acetone
gas in the exhaled breath sample because there is a strong
positive correlation between the levels of acetone in exhaled
breath and glucose level in the blood sample. This implies
that the acetone concentration in the exhaled breath increases
with an increase in blood glucose levels.

Voltage, resistance, humidity, temperature and pressure
values are measured in the analysis. To account for the effects
of operational temperature and humidity, we have included a
temperature and humidity sensor in the sensor array. Measur-
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FIGURE 6. Plot of statistical analysis. The derived regression line
equation is y = 192.92x + 43.432 with a R2 value of 0.9877.

ing the pressure of breath is important as improper blowing
can impact the acetone readings. According to the test results,
voltage and resistance are the key factors in the detecting
process, with the other factors having little impact on the
data. A test sample’s voltage, resistance, pressure, humidity
and temperature variations over time are shown in Fig. 7.
It is apparent from Fig. 7 that the voltage value of the
sensor increases along with rising glucose concentrations.
Temperature and humidity had no discernible effect on our
test results because testing is conducted in a controlled envi-
ronment under normal working conditions. Temperature and
humidity effects can be offset by adjusting the sensor signal
appropriately. In a few instances, we observed that when the
pressure values were low, the voltage and resistance values
slightly decreased. This occurred as a result of the partic-
ipant’s improper blow into the detecting chamber. Accord-
ingly, when taking the acetone measurement, it is important
to consider the pressure of exhaled breath into account.

B. PERFORMANCE ANALYSIS OF THE CLASSIFICATION
MODELS

We have considered the recent works related to non-invasive
diabetic detection in this work. There are a few studies where
the authors used a sample of exhaled breath to identify dia-
betes. However, these works use different sensing modules.
In this work, we have designed and implemented a new
sensing approach for the detection process. Because of this,
a direct comparison with the results of the data classification
methods discussed in other research publications will not be
appropriate. However, in order to compare the results of the
proposed neural network model, we implemented the con-
ventional data classification algorithms and tested them with
the proposed sensing module to detect diabetes. Conventional
and classical data classification algorithms are implemented
to evaluate the effectiveness of the proposed network. Along
with the proposed CORNN model, we have also imple-
mented the traditional SVM with Singular Value Decomposi-
tion (SVD), the K-Nearest Neighbours (KNN) classification
algorithm with Principal Component Analysis (PCA) as the
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FIGURE 7. Variations in a test patient’s blood glucose, sensor output voltage, resistance, pressure, humidity and temperature readings

over a time interval, with recordings made every 0.1 seconds.

feature extractor, the Shallow CNN, the Recurrent Neural
Network (RNN) model, the CNN-Random Forest (RF) com-
bination network, the CNN-MLP model and the CNN-SVM
combination network [32], [33], [34], [35], [36]. Both, SVM
and MLP classifiers are used to classify the samples obtained
after the correlation process. The performance of each of
these learning models is analysed in this section.

To evaluate the performance of the CORNN hybrid model,
the important performance parameters are computed. From
the components of the generated confusion matrix, all param-
eter values are obtained. The proposed correlation network’s
performance is contrasted with that of classical techniques

VOLUME 11, 2023

in Table 4. In addition to accuracy, we have evaluated the
sensitivity, specificity, precision, F1 score, Matthews Corre-
lation Coefficient (MCC), False Discovery Rate (FDR), False
Omission Rate (FOR) and error rates of the classification
networks [37]. While KNN is a classifier like SVM, SVD and
PCA algorithms are feature extraction methods. SVD-SVM,
PCA-SVM and PCA-KNN are examples of conventional
machine learning approaches. These models employ two sep-
arate feature extraction and classification techniques for anal-
ysis. The accuracy of the predictions made by the SVD-SVM,
PCA-SVM and PCA-KNN networks are 86.84%, 88.16%
and 82.89%, respectively.
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TABLE 4. Comparison of performance measures of the proposed CORNN networks and other classical data classification techniques.

. . Accuracy Sensitivity Specificity .
Classification Models Precision FDR FOR F1 score MCC Error rate
(%) (%) (%)

SVD with

86.84 83.78 89.74 0.885 0.114 0.146 0.861 0.737 0.131
SVM classifier
PCA with

82.89 80.56 85.01 0.828 0.171 0.17 0.817 0.657 0.171
KNN classifier
PCA with

88.16 86.11 90.02 0.886 0.114 0.122 0.873 0.762 0.118
SVM classifier
RNN

83.55 81.69 85.18 0.828 0.171 0.158 0.823 0.669 0.164
Model
ShallowCNN

91.45 91.3 91.57 0.9 0.1 0.073 0.906 0.828 0.085
Model
CNN with

93.42 91.67 95.01 0.943 0.057 0.073 0.929 0.868 0.065
RF classifier
CNN with

95.39 95.65 95.18 0.943 0.057 0.036 0.949 0.907 0.046
MLP classifier
CNN with

96.05 95.71 96.34 0.957 0.043 0.036 0.957 0.92 0.039
SVM classifier
Proposed CORNN

97.37 97.14 97.56 0.971 0.028 0.024 0.971 0.947 0.026
with MLP classifier
Proposed CORNN

98.02 98.55 97.59 0.971 0.028 0.012 0.978 0.96 0.02
with SVM classifier

Deep learning networks like CNN automatically extract
features from input signals. As a result, CNN-based net-
works could provide greater efficiency than conventional
machine learning models. CNN model that has only one
hidden layer is called shallow CNN [38]. Also, we have
deployed a deep-learning CNN with five layers. The classi-
fication accuracy for the single-layer CNN is 91.45%. With
five layers, CNN-SVM model correctly classified the test
samples with 96.05% accuracy. CNN combined with RF net-
work classified the test samples with an accuracy of 93.42%.
When compared to the other models taken into consideration
for this evaluation, the proposed CORNN model attained
the highest accuracy. The accuracy of the CORNN model
with MLP classifier for predicting diabetes is obtained as
97.37%. After adding the SVM classifier to the CORNN
model, the prediction accuracy of the model improved. The
performance of the CORNN hybrid model with different
kernels is also examined. Better performance of classifica-
tion was achieved with the RBF kernel. The test samples
were classified with 98.02% accuracy by the CORNN-SVM
hybrid network using an RBF kernel. Compared to all
other techniques, this network’s error rate is relatively
low at 0.02.

In typical machine learning networks, decreasing comput-
ing time is important since training and testing take longer
when the data’s dimensions are huge. Table 5 compares the
execution timings of the various data classification networks
taken into account in this study. Traditional machine learning
techniques (SVD-SVM, PCA-SVM, and PCA-KNN) take

51720

TABLE 5. Execution time of the different learning networks.

Feature . . Total
. Classification .
extraction X computational
Models . time .
time time
(seconds)
(seconds) (seconds)
SVD-SVM 1.942 1.879 3.821
PCA-KNN 1.942 2.26 4.202
PCA-SVM 1.921 1.842 3.763
Shallow CNN | 0.545 2.332 2.877
CNN-RF 0.946 1.942 2.888
CNN-MLP 0.978 1.798 2.776
CNN-SVM 0.949 1.467 2.416
CORNN- 1.163 1.789 2.952
MLP
CORNN- 1.124 1.468 2.592
SVM

longer to execute since they employ separate algorithms
for feature extraction and classification. The average fea-
ture extraction time for the proposed deep learning CORNN
model is 1.163 seconds. The MLP classifier predicts the class
in 1.789 seconds. The total computing time for this network
is 2.952s. The CORNN-SVM hybrid model has taken only
2.592s for computation. The significant reduction in process-
ing time that deep learning networks offer has led to their
increased popularity.
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TABLE 6. Validation results with number of samples misclassified.

Patient Healthy Misclassified
Models
Class Class Samples

CNN-MLP 65 87

CNN-SVM 65 87

CORNN- 67 85

MLP

CORNN- 68 84 3

SVM

C. VALIDATION OF RESULTS

Clinical validation is done to validate the test outcomes.
We conducted the validation test with the assistance of medi-
cal professionals, and the results were approved by the physi-
cian. The validation findings are shown in Table 6 along
with the number of samples that were misidentified. The
clinical evaluation’s findings have nearly mirrored those of
our test results. Out of the 152 samples that were analysed,
the proposed deep learning model classified 68 samples as
diabetes and 84 samples as healthy. This model misclassified
only three samples. The proposed model accurately classified
all of the healthy samples in the healthy group. To validate the
relevance of the change in the model’s classification accuracy,
we used a t-test. We had a p-value of under 0.05 for the
suggested model. This demonstrates that the outcome was not
a random occurrence and that it is statistically significant.

V. CONCLUSION

In this paper, a novel sensing module and an efficient
deep-learning neural network model are proposed for the
non-invasive and automated detection of diabetes. To effec-
tively manage diabetes and to reduce the health issues associ-
ated with diabetes, early detection of the disease is important.
This study describes a breath-based diagnosis method that
offers several advantages over conventional methods. The
outcomes of the proposed system are compared with the
traditional blood-based diagnosis method. We observed a
strong positive correlation between the two results with r and
R? values of 0.9938 and 0.9877, respectively. The statistical
analysis suggests that the proposed sensing approach has the
potential to be used as a non-invasive technique for detecting
diabetes. The CORNN hybrid model performs better in terms
of data classification and prediction accuracy than other tra-
ditional approaches. The proposed medical system predicted
diabetes with an accuracy of 98.02%. On the basis of our
research, we draw the conclusion that the proposed method is
effective and can be used in clinical practice to non-invasively
detect diabetes.
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